skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Russell, R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nuclear morphology plays a critical role in regulating gene expression and cell functions. While most research has focused on the direct effects of nuclear morphology on cell fate, its impact on the cell secretome and surrounding cells remains largely unexplored. In this study, we fabricate implants with a micropillar topography using methacrylated poly(octamethylene citrate)/hydroxyapatite (mPOC/HA) composites to investigate how micropillar-induced nuclear deformation influences cell secretome for osteogenesis and cranial bone regeneration. In vitro, cells with deformed nuclei show enhanced secretion of proteins that support extracellular matrix (ECM) organization, which promotes osteogenic differentiation in neighboring mesenchymal stromal cells (MSCs). In a female mouse model with critical-size cranial defects, nuclear-deformed MSCs on micropillar mPOC/HA implants elevate Col1a2 expression, contributing to bone matrix formation, and drive cell differentiation toward osteogenic progenitor cells. These findings indicate that micropillars modulate the secretome of hMSCs, thereby influencing the fate of surrounding cells through matricrine effects. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. Free, publicly-accessible full text available December 1, 2026
  3. Free, publicly-accessible full text available November 13, 2025
  4. Discrete-event simulation models generate random variates from input distributions and compute outputs according to the simulation logic. The input distributions are typically fitted to finite real-world data and thus are subject to estimation errors that can propagate to the simulation outputs: an issue commonly known as input uncertainty (IU). This paper investigates quantifying IU using the output confidence intervals (CIs) computed from bootstrap quantile estimators. The standard direct bootstrap method has overcoverage due to convolution of the simulation error and IU; however, the brute-force way of washing away the former is computationally demanding. We present two new bootstrap methods to enhance direct resampling in both statistical and computational efficiencies using shrinkage strategies to down-scale the variabilities encapsulated in the CIs. Our asymptotic analysis shows how both approaches produce tight CIs accounting for IU under limited input data and simulation effort along with the simulation sample-size requirements relative to the input data size. We demonstrate performances of the shrinkage strategies with several numerical experiments and investigate the conditions under which each method performs well. We also show advantages of nonparametric approaches over parametric bootstrap when the distribution family is misspecified and over metamodel approaches when the dimension of the distribution parameters is high. History: Accepted by Bruno Tuffin, Area Editor for Simulation. Funding: This work was supported by the National Science Foundation [CAREER CMMI-1834710, CAREER CMMI-2045400, DMS-1854659, and IIS-1849280]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0044 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2022.0044 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ . 
    more » « less
  5. Free, publicly-accessible full text available September 1, 2026
  6. ABSTRACT IntroductionCurrent wearables that collect heart rate and acceleration were not designed for children and/or do not allow access to raw signals, making them fundamentally unverifiable. This study describes the creation and calibration of an open-source multichannel platform (PATCH) designed to measure heart rate and acceleration in children ages 3–8 yr. MethodsChildren (N = 63; mean age, 6.3 yr) participated in a 45-min protocol ranging in intensities from sedentary to vigorous activity. Actiheart-5 was used as a comparison measure. We calculated mean bias, mean absolute error (MAE) mean absolute percent error (MA%E), Pearson correlations, and Lin’s concordance correlation coefficient (CCC). ResultsMean bias between PATCH and Actiheart heart rate was 2.26 bpm, MAE was 6.67 bpm, and M%E was 5.99%. The correlation between PATCH and Actiheart heart rate was 0.89, and CCC was 0.88. For acceleration, mean bias was 1.16 mg and MAE was 12.24 mg. The correlation between PATCH and Actiheart was 0.96, and CCC was 0.95. ConclusionsThe PATCH demonstrated clinically acceptable accuracies to measure heart rate and acceleration compared with a research-grade device. 
    more » « less
  7. Yamada, Yosuke (Ed.)
    The purpose of this study was to evaluate the reliability and validity of the raw accelerometry output from research-grade and consumer wearable devices compared to accelerations produced by a mechanical shaker table. Raw accelerometry data from a total of 40 devices (i.e., n = 10 ActiGraph wGT3X-BT, n = 10 Apple Watch Series 7, n = 10 Garmin Vivoactive 4S, and n = 10 Fitbit Sense) were compared to reference accelerations produced by an orbital shaker table at speeds ranging from 0.6 Hz (4.4 milligravity-mg) to 3.2 Hz (124.7mg). Two-way random effects absolute intraclass correlation coefficients (ICC) tested inter-device reliability. Pearson product moment, Lin’s concordance correlation coefficient (CCC), absolute error, mean bias, and equivalence testing were calculated to assess the validity between the raw estimates from the devices and the reference metric. Estimates from Apple, ActiGraph, Garmin, and Fitbit were reliable, with ICCs = 0.99, 0.97, 0.88, and 0.88, respectively. Estimates from ActiGraph, Apple, and Fitbit devices exhibited excellent concordance with the reference CCCs = 0.88, 0.83, and 0.85, respectively, while estimates from Garmin exhibited moderate concordance CCC = 0.59 based on the mean aggregation method. ActiGraph, Apple, and Fitbit produced similar absolute errors = 16.9mg, 21.6mg, and 22.0mg, respectively, while Garmin produced higher absolute error = 32.5mg compared to the reference. ActiGraph produced the lowest mean bias 0.0mg (95%CI = -40.0, 41.0). Equivalence testing revealed raw accelerometry data from all devices were not statistically significantly within the equivalence bounds of the shaker speed. Findings from this study provide evidence that raw accelerometry data from Apple, Garmin, and Fitbit devices can be used to reliably estimate movement; however, no estimates were statistically significantly equivalent to the reference. Future studies could explore device-agnostic and harmonization methods for estimating physical activity using the raw accelerometry signals from the consumer wearables studied herein. 
    more » « less
  8. We apply a recently developed measurement technique for methane (CH4) isotopologues* (isotopic variants of CH4—13CH4, 12CH3D, 13CH3D, and 12CH2D2) to identify contributions to the atmospheric burden from fossil fuel and microbial sources. The aim of this study is to constrain factors that ultimately control the concentration of this potent greenhouse gas on global, regional, and local levels. While predictions of atmospheric methane isotopologues have been modeled, we present direct measurements that point to a different atmospheric methane composition and to a microbial flux with less clumping (greater deficits relative to stochastic) in both 13CH3D and 12CH2D2 than had been previously assigned. These differences make atmospheric isotopologue data sufficiently sensitive to variations in microbial to fossil fuel fluxes to distinguish between emissions scenarios such as those generated by different versions of EDGAR (the Emissions Database for Global Atmospheric Research), even when existing constraints on the atmospheric CH4 concentration profile as well as traditional isotopes are kept constant. 
    more » « less